Overview

We explored the MK_Fragmentation() to estimate fragmentation statistics at the landscape and patch/node level.

Example database

In this example, the MK_Fragmentation() function was applied to estimate the connectivity of 404 remnant habitat nodes/patches, which were modeled to 40 non-volant mammal species of the Trans-Mexican Volcanic System (TMVS) by Correa Ayram et al., (2017).

data("habitat_nodes", package = "Makurhini")
nrow(habitat_nodes) # Number of nodes
#> [1] 404
plot(st_geometry(habitat_nodes), col = "#00B050")

MK_Fragmentation()

To define the edge of the nodes we will use a distance of 500 m from the limit of the nodes (Haddad et al. 2015).

Fragmentation_test <- MK_Fragmentation(nodes = habitat_nodes, edge_distance = 500, plot = TRUE, min_node_area = 100, landscape_area = NULL, area_unit = "km2", perimeter_unit = "km")

Exploring results

  • The results are presented as a list, the first result is called “Summary landscape metrics (Viewer Panel)” and it has fragmentation statistics at landscape level.
names(Fragmentation_test)
#> [1] "Summary landscape metrics (Viewer Panel)"
#> [2] "Patch statistics shapefile"
Fragmentation_test$`Summary landscape metrics (Viewer Panel)`
Metric Value
Patch area (km2) 12735.7391
Number of patches 404.0000
Size (mean) 31.5241
Patches < minimum patch area 383.0000
Patches < minimum patch area (%) 28.8879
Total edge 17920.4740
Edge density 1.4071
Patch density 3.1722
Total Core Area (km2) 6315.9513
Cority 0.6040
Shape Index (mean) 2.2073
FRAC (mean) 8.4400
MESH (km2) 1443.4320
head(Fragmentation_test[[2]])
#> Simple feature collection with 6 features and 9 fields
#> Geometry type: POLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 40856.86 ymin: 2025032 xmax: 80825.67 ymax: 2066668
#> Projected CRS: NAD_1927_Albers
#>   Id     Area     CA CAPercent Perimeter EdgePercent   PARA ShapeIndex     FRAC
#> 1  1   0.8584  0.000    0.0000     5.989    100.0000 0.1433     1.8235 -23.4460
#> 2  2   2.2022  0.000    0.0000    11.346    100.0000 0.1941     2.1568   6.1533
#> 3  3 110.1997 53.378   48.4375   184.969     51.5625 0.5958     4.9705   2.2203
#> 4  4   1.2100  0.000    0.0000     6.974    100.0000 0.1735     1.7885  20.3776
#> 5  5   1.8472  0.000    0.0000    14.452    100.0000 0.1278     2.9996   8.7044
#> 6  6   0.2631  0.000    0.0000     4.685    100.0000 0.0562     2.5766  -2.3133
#>                         geometry
#> 1 POLYGON ((54911.05 2035815,...
#> 2 POLYGON ((44591.28 2042209,...
#> 3 POLYGON ((46491.11 2042467,...
#> 4 POLYGON ((54944.49 2048163,...
#> 5 POLYGON ((80094.28 2064140,...
#> 6 POLYGON ((69205.24 2066394,...
  • To save the shapefile you can use the ‘write_sf()’ function from ‘sf’ package: write_sf(Fragmentacion_test[[2]], “…/folder/fragmentacion.shp”)

Viewing the results

We can visualize the static at the patch level using the default plot() function or other spatial information display packages like the ‘tmap’ package, for example:

  • Core area (%):

  • Edge (%)

  • Perimeter-area ratio (PARA)

  • Shape Index

  • Fractal Dimension Index

Exploring other edge depths

We can make a loop where we explore different edge depths. In the following example, We will explore 10 edge depths (edge_distance argument): 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 meters. We will apply the ‘MK_Fragmentation’ function using the previous distances and then, we will extract the core area percentage and edge percentage statistics. Finally, we will plot the average of the patch core area percentage and edge percentage (% core area + % edge = 100%).

#>   Edge.distance      Type Percentage
#> 1           100 Core Area   65.76120
#> 2           100      Edge   34.23880
#> 3           200 Core Area   41.98064
#> 4           200      Edge   58.01936
#> 5           300 Core Area   26.85321
#> 6           300      Edge   73.14679

The average core area percentage (average patch area that has the least possible edge effect) for all nodes decreases by more than 70% when considering an edge effect with an edge depth distance of 1 km.

Edge depth distance (m) CoreArea (%)
100 83.5%
500 34.14%
1000 9.78%

Reference:

  • INEGI. (2013). Conjunto de datos vectoriales de uso del suelo y vegetación, serie V (capa unión), escala 1:250,000. Instituto Nacional de Estadística y Geografía, Aguascalientes.

  • McGarigal, K., S. A. Cushman, M. C. Neel, and E. Ene. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: www.umass.edu/landeco/research/fragstats/fragstats.html.

  • Haddad et al. (2015). Science Advances 1(2):e1500052. DOI: 10.1126/sciadv.1500052.