Overview

We explored the MK_Fragmentation() to estimate fragmentation statistics at the landscape and patch level.

Example database

We loaded the “vegetation_patches” database with 142 patches of old-growth vegetation from the state of Chiapas, Mexico. The shapefile has 142 rows (patches), the first column corresponds to the id of the patch.

data("vegetation_patches", package = "Makurhini")
nrow(vegetation_patches) # Number of patches
#> [1] 142
plot(st_geometry(vegetation_patches), col = "#00B050")

MK_Fragmentation()

To define the edge of the patches we will use a distance of 500 m from the limit of the patches (Haddad et al. 2015).

Fragmentation_test <- MK_Fragmentation(patches = vegetation_patches, edge_distance = 500, plot = F, min_patch_area = 100, landscape_area = NULL, area_unit = "km2", perimeter_unit = "km")

Exploring results

  • The results are presented as a list, the first result is called “Summary landscape metrics (Viewer Panel)” and it has fragmentation statistics at landscape level.
names(Fragmentation_test)
#> [1] "Summary landscape metrics (Viewer Panel)"
#> [2] "Patch statistics shapefile"
Fragmentation_test$`Summary landscape metrics (Viewer Panel)`
Metric Value
Patch area (km2) 12792.2046
Number of patches 142.0000
Size (mean) 90.0859
Patches < minimum patch area 126.0000
Patches < minimum patch area (%) 30.8017
Total edge 12297.5330
Edge density 0.9613
Total Core Area (km2) 7622.3940
Cority 1.0000
Shape Index (mean) 138.4898
FRAC (mean) 1.4680
MESH (km2) 1543.1460
head(Fragmentation_test[[2]])
#> Simple feature collection with 6 features and 9 fields
#> Geometry type: POLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 3542152 ymin: 498183.1 xmax: 3711426 ymax: 696540.5
#> CRS:           +proj=lcc +lat_1=17.5 +lat_2=29.5 +lat_0=12 +lon_0=-102 +x_0=2500000 +y_0=0 +datum=WGS84 +units=m +no_defs
#>   id      Area        CA CAPercent Perimeter EdgePercent   PARA ShapeIndex
#> 1  1 4195.5691 3541.3806   84.4076  1412.046     15.5924 2.9713  8212.7666
#> 2  2   60.2227   11.9415   19.8289   167.982     80.1711 0.3585   117.0545
#> 3  3   48.8665    6.2099   12.7079   127.049     87.2921 0.3846    79.7484
#> 4  4   15.1875    7.4210   48.8626    18.536     51.1374 0.8194     6.4864
#> 5  5   33.2716   13.0877   39.3360    55.038     60.6640 0.6045    28.5066
#> 6  6   53.1344   11.3564   21.3730   111.123     78.6270 0.4782    72.7339
#>     FRAC                       geometry
#> 1 1.4065 POLYGON ((3676911 589967.3,...
#> 2 1.8241 POLYGON ((3558044 696202.5,...
#> 3 1.7785 POLYGON ((3569169 687776.4,...
#> 4 1.1273 POLYGON ((3547317 685713.2,...
#> 5 1.4961 POLYGON ((3567471 684357.4,...
#> 6 1.6735 POLYGON ((3590569 672451.7,...
  • To save the shapefile you can use the ‘write_sf()’ function from ‘sf’ package: write_sf(Fragmentacion_test[[2]], “…/folder/fragmentacion.shp”)

Viewing the results

We can visualize the static at the patch level using the default plot() function or other spatial information display packages like the ‘tmap’ package, for example:

  • Core area (%):

  • Edge (%)

  • Perimeter-area ratio (PARA)

  • Shape Index

  • Fractal Dimension Index

Exploring other edge depths

We can make a loop where we explore different edge depths. In the following example, We will explore 10 edge depths (edge_distance argument): 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 meters. We will apply the ‘MK_Fragmentation’ function using the previous distances and then, we will extract the core area percentage and edge percentage statistics. Finally, we will plot the average of the patch core area percentage and edge percentage (% core area + % edge = 100%).

#>   Edge.distance      Type Percentage
#> 1           100 Core Area   83.50499
#> 2           100      Edge   16.49501
#> 3           200 Core Area   68.18516
#> 4           200      Edge   31.81484
#> 5           300 Core Area   54.77231
#> 6           300      Edge   45.22769

The average core area percentage (average patch area that has the least possible edge effect) for all patches decreases by more than 70% when considering an edge effect with an edge depth distance of 1 km.

Edge depth distance (m) CoreArea (%)
100 83.5%
500 34.14%
1000 9.78%

Reference:

  • INEGI. (2013). Conjunto de datos vectoriales de uso del suelo y vegetación, serie V (capa unión), escala 1:250,000. Instituto Nacional de Estadística y Geografía, Aguascalientes.

  • McGarigal, K., S. A. Cushman, M. C. Neel, and E. Ene. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: www.umass.edu/landeco/research/fragstats/fragstats.html.

  • Haddad et al. (2015). Science Advances 1(2):e1500052. DOI: 10.1126/sciadv.1500052.