Overview

We will explore the ProtConn indicator which was developed to report international conservation targets (Saura et al. 2017), the indicator offers you an analysis of protected areas connectivity for a particular region.

Loading data

Loading two ecoregions and one set of protected areas, both shapefiles:

data("Protected_areas", package = "Makurhini")
data("regions", package = "Makurhini")

ProtConn estimation for a single ecoregion

In the following example, we will estimate the ProtConn indicator and fractions in one ecoregion using two dispersal distances (10 and 30 km) and a connection probability of 0.5. Also, we will use a Transboundary buffer of 50 km (50000 meters) from the edge of the region (transboundary_type = “region”, ?MK_ProtConn), the distance between protected areas will be using centroids.

region <- regions[1,]
test.1 <- MK_ProtConn(nodes = Protected_areas, region = region, 
                      area_unit = "ha", distance = list(type= "centroid"), 
                      distance_thresholds = c(10000, 30000), probability = 0.5, 
                      transboundary = 50000, transboundary_type = "region",
                      LA = NULL, plot = TRUE, write = NULL,
                      intern = FALSE)

Exploring the results for a single ecoregion

  • Result 10 km:
test.1$d10000$`Protected Connected (Viewer Panel)`
Index Value ProtConn indicator Percentage
EC(PC) 130282.77 Prot 7.5228
PC 1.2000e-03 Unprotected 92.4772
Maximum landscape attribute 3708497.35 ProtConn 3.5131
Protected surface 278983.74 ProtUnconn 4.0097
RelConn 46.6991
ProtConn_Prot 97.4444
ProtConn_Trans 0.0000
ProtConn_Unprot 2.5556
ProtConn_Within 94.9554
ProtConn_Contig 5.0446
ProtConn_Within_land 3.3359
ProtConn_Contig_land 0.1772
ProtConn_Unprot_land 0.0898
ProtConn_Trans_land 0.0000
test.1$d10000
#> $`Protected Connected (Viewer Panel)`
#> 
#> $`ProtConn Plot`

  • Result 30 km:
test.1$d30000$`Protected Connected (Viewer Panel)`
Index Value ProtConn indicator Percentage
EC(PC) 149921.76 Prot 7.5228
PC 1.6000e-03 Unprotected 92.4772
Maximum landscape attribute 3708497.35 ProtConn 4.0427
Protected surface 278983.74 ProtUnconn 3.4802
RelConn 53.7385
ProtConn_Prot 84.6797
ProtConn_Trans 0.0000
ProtConn_Unprot 15.3203
ProtConn_Within 82.5167
ProtConn_Contig 17.4833
ProtConn_Within_land 3.3359
ProtConn_Contig_land 0.7068
ProtConn_Unprot_land 0.6193
ProtConn_Trans_land 0.0000
test.1$d30000
#> $`Protected Connected (Viewer Panel)`
#> 
#> $`ProtConn Plot`

ProtConn estimation for two or more ecoregions.

Now, we will use the three ecoregions. The processing time will be longer when using more regions, although we can reduce it using the parallel argument.

test.2 <- MK_ProtConnMult(nodes = Protected_areas, regions = regions, 
                          area_unit = "ha", distance = list(type= "centroid"), 
                          distance_thresholds = c(10000, 30000), probability = 0.5, 
                          transboundary = 50000, transboundary_type = "region",
                          plot = FALSE, write = NULL, 
                          parallel = NULL, intern = FALSE)

Exploring some results

  • Table summary result:
names(test.2)
#> [1] "ProtConn_10000" "ProtConn_30000"
test.2$ProtConn_10000$ProtConn_overall10000
ProtConn indicator Values (%) SD SEM normal.lower normal.upper basic.lower basic.upper percent.lower percent.upper bca.lower bca.upper
3 Prot 6.916 1.332 0.769 5.669 8.103 5.996 8.443 5.390 7.837 5.390 7.732
4 Unprotected 93.084 1.332 0.769 91.897 94.331 91.557 94.004 92.163 94.610 92.163 93.899
5 ProtConn 2.894 1.050 0.606 1.903 3.824 2.274 4.106 1.682 3.513 1.682 3.495
6 ProtUnconn 4.023 0.321 0.186 3.728 4.316 3.695 4.337 3.708 4.351 3.708 4.237
7 RelConn 40.796 8.383 4.840 32.835 48.193 34.893 50.391 31.200 46.699 31.200 45.225
8 ProtConn_Prot 97.302 2.105 1.215 95.365 99.213 95.272 99.475 95.130 99.333 95.130 98.703
9 ProtConn_Trans 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 ProtConn_Unprot 2.698 2.105 1.215 0.787 4.635 0.525 4.728 0.667 4.870 0.667 4.098
11 ProtConn_Within 88.251 5.841 3.372 82.524 93.393 81.547 92.239 84.263 94.955 84.263 91.815
12 ProtConn_Contig 11.749 5.841 3.372 6.607 17.476 7.761 18.453 5.045 15.737 5.045 15.313
13 ProtConn_Within_land 2.571 1.001 0.578 1.617 3.452 1.805 3.703 1.438 3.336 1.438 3.071
14 ProtConn_Contig_land 0.323 0.198 0.114 0.146 0.512 0.097 0.469 0.177 0.549 0.177 0.549
15 ProtConn_Unprot_land 0.065 0.036 0.021 0.030 0.098 0.040 0.107 0.023 0.090 0.023 0.087
16 ProtConn_Trans_land 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  • Shapefile result:
test.2$ProtConn_10000$ProtConn_10000
#> Simple feature collection with 3 features and 17 fields
#> Geometry type: GEOMETRY
#> Dimension:     XY
#> Bounding box:  xmin: 2287307 ymin: 792114.5 xmax: 3085667 ymax: 1392441
#> CRS:           BOUNDCRS[
#>     SOURCECRS[
#>         PROJCRS["unknown",
#>             BASEGEOGCRS["unknown",
#>                 DATUM["World Geodetic System 1984",
#>                     ELLIPSOID["WGS 84",6378137,298.257223563,
#>                         LENGTHUNIT["metre",1]],
#>                     ID["EPSG",6326]],
#>                 PRIMEM["Greenwich",0,
#>                     ANGLEUNIT["degree",0.0174532925199433],
#>                     ID["EPSG",8901]]],
#>             CONVERSION["unknown",
#>                 METHOD["Lambert Conic Conformal (2SP)",
#>                     ID["EPSG",9802]],
#>                 PARAMETER["Latitude of false origin",12,
#>                     ANGLEUNIT["degree",0.0174532925199433],
#>                     ID["EPSG",8821]],
#>                 PARAMETER["Longitude of false origin",-102,
#>                     ANGLEUNIT["degree",0.0174532925199433],
#>                     ID["EPSG",8822]],
#>                 PARAMETER["Latitude of 1st standard parallel",17.5,
#>                     ANGLEUNIT["degree",0.0174532925199433],
#>                     ID["EPSG",8823]],
#>                 PARAMETER["Latitude of 2nd standard parallel",29.5,
#>                     ANGLEUNIT["degree",0.0174532925199433],
#>                     ID["EPSG",8824]],
#>                 PARAMETER["Easting at false origin",2500000,
#>                     LENGTHUNIT["metre",1],
#>                     ID["EPSG",8826]],
#>                 PARAMETER["Northing at false origin",0,
#>                     LENGTHUNIT["metre",1],
#>                     ID["EPSG",8827]]],
#>             CS[Cartesian,2],
#>                 AXIS["(E)",east,
#>                     ORDER[1],
#>                     LENGTHUNIT["metre",1,
#>                         ID["EPSG",9001]]],
#>                 AXIS["(N)",north,
#>                     ORDER[2],
#>                     LENGTHUNIT["metre",1,
#>                         ID["EPSG",9001]]]]],
#>     TARGETCRS[
#>         GEOGCRS["WGS 84",
#>             DATUM["World Geodetic System 1984",
#>                 ELLIPSOID["WGS 84",6378137,298.257223563,
#>                     LENGTHUNIT["metre",1]]],
#>             PRIMEM["Greenwich",0,
#>                 ANGLEUNIT["degree",0.0174532925199433]],
#>             CS[ellipsoidal,2],
#>                 AXIS["geodetic latitude (Lat)",north,
#>                     ORDER[1],
#>                     ANGLEUNIT["degree",0.0174532925199433]],
#>                 AXIS["geodetic longitude (Lon)",east,
#>                     ORDER[2],
#>                     ANGLEUNIT["degree",0.0174532925199433]],
#>             ID["EPSG",4326]]],
#>     ABRIDGEDTRANSFORMATION["Transformation from unknown to WGS84",
#>         METHOD["Geocentric translations (geog2D domain)",
#>             ID["EPSG",9603]],
#>         PARAMETER["X-axis translation",0,
#>             ID["EPSG",8605]],
#>         PARAMETER["Y-axis translation",0,
#>             ID["EPSG",8606]],
#>         PARAMETER["Z-axis translation",0,
#>             ID["EPSG",8607]]]]
#>   OBJECTID    EC(PC)     PC   Prot Unprotected ProtConn ProtUnconn RelConn
#> 1       61 130282.77 0.0012 7.5228     92.4772   3.5131     4.0097 46.6991
#> 2      143  98619.63 0.0003 5.3895     94.6105   1.6815     3.7080 31.2002
#> 3      772 238055.88 0.0012 7.8370     92.1630   3.4865     4.3505 44.4882
#>   ProtConn_Prot ProtConn_Trans ProtConn_Unprot ProtConn_Within ProtConn_Contig
#> 1       97.4444              0          2.5556         94.9554          5.0446
#> 2       95.1302              0          4.8698         85.5352         14.4648
#> 3       99.3326              0          0.6674         84.2633         15.7367
#>   ProtConn_Within_land ProtConn_Contig_land ProtConn_Unprot_land
#> 1               3.3359               0.1772               0.0898
#> 2               1.4383               0.2432               0.0819
#> 3               2.9379               0.5487               0.0233
#>   ProtConn_Trans_land                       geometry
#> 1                   0 POLYGON ((2553705 1009434, ...
#> 2                   0 MULTIPOLYGON (((2475555 121...
#> 3                   0 MULTIPOLYGON (((2933834 137...

  • It is important not to forget that you can change the type of distance using the distance (see, distancefile() ) argument:

Euclidean distances: * distance = list(type= “centroid”) * distance = list(type= “edge”)

Least cost distances, you need a raster with resistance values, it is recommended that the range of values be from 1 to 10: * distance = list(type= “least-cost”, resistance = “resistance raster”) * distance = list(type= “commute-time”, resistance = “resistance raster”)

Reference:

  • Saura, S., Bastin, L., Battistella, L., Mandrici, A., & Dubois, G. (2017). Protected areas in the world’s ecoregions: How well connected are they? Ecological Indicators, 76, 144–158.