We will explore the ProtConn indicator which was developed to report international conservation targets (Saura et al. 2017), the indicator offers you an analysis of protected areas connectivity for a particular region.
In the following example, we will estimate the ProtConn indicator and fractions in one ecoregion using two dispersal distances (10 and 30 km) and a connection probability of 0.5. Also, we will use a Transboundary buffer of 50 km (50000 meters) from the edge of the region (transboundary_type = “region”, ?MK_ProtConn), the distance between protected areas will be using centroids.
region <- regions[1,] test.1 <- MK_ProtConn(nodes = Protected_areas, region = region, area_unit = "ha", distance = list(type= "centroid"), distance_thresholds = c(10000, 30000), probability = 0.5, transboundary = 50000, transboundary_type = "region", LA = NULL, plot = TRUE, write = NULL, intern = FALSE)
test.1$d10000$`Protected Connected (Viewer Panel)`
Index | Value | ProtConn indicator | Percentage |
---|---|---|---|
EC(PC) | 130282.77 | Prot | 7.5228 |
PC | 1.2000e-03 | Unprotected | 92.4772 |
Maximum landscape attribute | 3708497.35 | ProtConn | 3.5131 |
Protected surface | 278983.74 | ProtUnconn | 4.0097 |
RelConn | 46.6991 | ||
ProtConn_Prot | 97.4444 | ||
ProtConn_Trans | 0.0000 | ||
ProtConn_Unprot | 2.5556 | ||
ProtConn_Within | 94.9554 | ||
ProtConn_Contig | 5.0446 | ||
ProtConn_Within_land | 3.3359 | ||
ProtConn_Contig_land | 0.1772 | ||
ProtConn_Unprot_land | 0.0898 | ||
ProtConn_Trans_land | 0.0000 |
test.1$d10000 #> $`Protected Connected (Viewer Panel)` #> #> $`ProtConn Plot`
test.1$d30000$`Protected Connected (Viewer Panel)`
Index | Value | ProtConn indicator | Percentage |
---|---|---|---|
EC(PC) | 149921.76 | Prot | 7.5228 |
PC | 1.6000e-03 | Unprotected | 92.4772 |
Maximum landscape attribute | 3708497.35 | ProtConn | 4.0427 |
Protected surface | 278983.74 | ProtUnconn | 3.4802 |
RelConn | 53.7385 | ||
ProtConn_Prot | 84.6797 | ||
ProtConn_Trans | 0.0000 | ||
ProtConn_Unprot | 15.3203 | ||
ProtConn_Within | 82.5167 | ||
ProtConn_Contig | 17.4833 | ||
ProtConn_Within_land | 3.3359 | ||
ProtConn_Contig_land | 0.7068 | ||
ProtConn_Unprot_land | 0.6193 | ||
ProtConn_Trans_land | 0.0000 |
test.1$d30000 #> $`Protected Connected (Viewer Panel)` #> #> $`ProtConn Plot`
Now, we will use the three ecoregions. The processing time will be longer when using more regions, although we can reduce it using the parallel argument.
test.2 <- MK_ProtConnMult(nodes = Protected_areas, regions = regions, area_unit = "ha", distance = list(type= "centroid"), distance_thresholds = c(10000, 30000), probability = 0.5, transboundary = 50000, transboundary_type = "region", plot = FALSE, write = NULL, parallel = NULL, intern = FALSE)
names(test.2) #> [1] "ProtConn_10000" "ProtConn_30000" test.2$ProtConn_10000$ProtConn_overall10000
ProtConn indicator | Values (%) | SD | SEM | normal.lower | normal.upper | basic.lower | basic.upper | percent.lower | percent.upper | bca.lower | bca.upper | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Prot | 6.916 | 1.332 | 0.769 | 5.669 | 8.103 | 5.996 | 8.443 | 5.390 | 7.837 | 5.390 | 7.732 |
4 | Unprotected | 93.084 | 1.332 | 0.769 | 91.897 | 94.331 | 91.557 | 94.004 | 92.163 | 94.610 | 92.163 | 93.899 |
5 | ProtConn | 2.894 | 1.050 | 0.606 | 1.903 | 3.824 | 2.274 | 4.106 | 1.682 | 3.513 | 1.682 | 3.495 |
6 | ProtUnconn | 4.023 | 0.321 | 0.186 | 3.728 | 4.316 | 3.695 | 4.337 | 3.708 | 4.351 | 3.708 | 4.237 |
7 | RelConn | 40.796 | 8.383 | 4.840 | 32.835 | 48.193 | 34.893 | 50.391 | 31.200 | 46.699 | 31.200 | 45.225 |
8 | ProtConn_Prot | 97.302 | 2.105 | 1.215 | 95.365 | 99.213 | 95.272 | 99.475 | 95.130 | 99.333 | 95.130 | 98.703 |
9 | ProtConn_Trans | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
10 | ProtConn_Unprot | 2.698 | 2.105 | 1.215 | 0.787 | 4.635 | 0.525 | 4.728 | 0.667 | 4.870 | 0.667 | 4.098 |
11 | ProtConn_Within | 88.251 | 5.841 | 3.372 | 82.524 | 93.393 | 81.547 | 92.239 | 84.263 | 94.955 | 84.263 | 91.815 |
12 | ProtConn_Contig | 11.749 | 5.841 | 3.372 | 6.607 | 17.476 | 7.761 | 18.453 | 5.045 | 15.737 | 5.045 | 15.313 |
13 | ProtConn_Within_land | 2.571 | 1.001 | 0.578 | 1.617 | 3.452 | 1.805 | 3.703 | 1.438 | 3.336 | 1.438 | 3.071 |
14 | ProtConn_Contig_land | 0.323 | 0.198 | 0.114 | 0.146 | 0.512 | 0.097 | 0.469 | 0.177 | 0.549 | 0.177 | 0.549 |
15 | ProtConn_Unprot_land | 0.065 | 0.036 | 0.021 | 0.030 | 0.098 | 0.040 | 0.107 | 0.023 | 0.090 | 0.023 | 0.087 |
16 | ProtConn_Trans_land | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
test.2$ProtConn_10000$ProtConn_10000 #> Simple feature collection with 3 features and 17 fields #> Geometry type: GEOMETRY #> Dimension: XY #> Bounding box: xmin: 2287307 ymin: 792114.5 xmax: 3085667 ymax: 1392441 #> CRS: BOUNDCRS[ #> SOURCECRS[ #> PROJCRS["unknown", #> BASEGEOGCRS["unknown", #> DATUM["World Geodetic System 1984", #> ELLIPSOID["WGS 84",6378137,298.257223563, #> LENGTHUNIT["metre",1]], #> ID["EPSG",6326]], #> PRIMEM["Greenwich",0, #> ANGLEUNIT["degree",0.0174532925199433], #> ID["EPSG",8901]]], #> CONVERSION["unknown", #> METHOD["Lambert Conic Conformal (2SP)", #> ID["EPSG",9802]], #> PARAMETER["Latitude of false origin",12, #> ANGLEUNIT["degree",0.0174532925199433], #> ID["EPSG",8821]], #> PARAMETER["Longitude of false origin",-102, #> ANGLEUNIT["degree",0.0174532925199433], #> ID["EPSG",8822]], #> PARAMETER["Latitude of 1st standard parallel",17.5, #> ANGLEUNIT["degree",0.0174532925199433], #> ID["EPSG",8823]], #> PARAMETER["Latitude of 2nd standard parallel",29.5, #> ANGLEUNIT["degree",0.0174532925199433], #> ID["EPSG",8824]], #> PARAMETER["Easting at false origin",2500000, #> LENGTHUNIT["metre",1], #> ID["EPSG",8826]], #> PARAMETER["Northing at false origin",0, #> LENGTHUNIT["metre",1], #> ID["EPSG",8827]]], #> CS[Cartesian,2], #> AXIS["(E)",east, #> ORDER[1], #> LENGTHUNIT["metre",1, #> ID["EPSG",9001]]], #> AXIS["(N)",north, #> ORDER[2], #> LENGTHUNIT["metre",1, #> ID["EPSG",9001]]]]], #> TARGETCRS[ #> GEOGCRS["WGS 84", #> DATUM["World Geodetic System 1984", #> ELLIPSOID["WGS 84",6378137,298.257223563, #> LENGTHUNIT["metre",1]]], #> PRIMEM["Greenwich",0, #> ANGLEUNIT["degree",0.0174532925199433]], #> CS[ellipsoidal,2], #> AXIS["geodetic latitude (Lat)",north, #> ORDER[1], #> ANGLEUNIT["degree",0.0174532925199433]], #> AXIS["geodetic longitude (Lon)",east, #> ORDER[2], #> ANGLEUNIT["degree",0.0174532925199433]], #> ID["EPSG",4326]]], #> ABRIDGEDTRANSFORMATION["Transformation from unknown to WGS84", #> METHOD["Geocentric translations (geog2D domain)", #> ID["EPSG",9603]], #> PARAMETER["X-axis translation",0, #> ID["EPSG",8605]], #> PARAMETER["Y-axis translation",0, #> ID["EPSG",8606]], #> PARAMETER["Z-axis translation",0, #> ID["EPSG",8607]]]] #> OBJECTID EC(PC) PC Prot Unprotected ProtConn ProtUnconn RelConn #> 1 61 130282.77 0.0012 7.5228 92.4772 3.5131 4.0097 46.6991 #> 2 143 98619.63 0.0003 5.3895 94.6105 1.6815 3.7080 31.2002 #> 3 772 238055.88 0.0012 7.8370 92.1630 3.4865 4.3505 44.4882 #> ProtConn_Prot ProtConn_Trans ProtConn_Unprot ProtConn_Within ProtConn_Contig #> 1 97.4444 0 2.5556 94.9554 5.0446 #> 2 95.1302 0 4.8698 85.5352 14.4648 #> 3 99.3326 0 0.6674 84.2633 15.7367 #> ProtConn_Within_land ProtConn_Contig_land ProtConn_Unprot_land #> 1 3.3359 0.1772 0.0898 #> 2 1.4383 0.2432 0.0819 #> 3 2.9379 0.5487 0.0233 #> ProtConn_Trans_land geometry #> 1 0 POLYGON ((2553705 1009434, ... #> 2 0 MULTIPOLYGON (((2475555 121... #> 3 0 MULTIPOLYGON (((2933834 137...
see, distancefile()
) argument:Euclidean distances: * distance = list(type= “centroid”) * distance = list(type= “edge”)
Least cost distances, you need a raster with resistance values, it is recommended that the range of values be from 1 to 10: * distance = list(type= “least-cost”, resistance = “resistance raster”) * distance = list(type= “commute-time”, resistance = “resistance raster”)
Reference: